Area Coverage Planner (FAAST 8100E)

The following data is aligned with BS5839 Part 1 and allows you to quickly calculate the most efficient pipe typology to maximise the number of sampling points when designing an Aspirating Smoke Detector system (ASD) for the following applications:

- Mission critical (e.g. IT facilities, data centres, clean rooms, telecommunications and archiving facilities)
- Harsh industrial environments (e.g. waste recycling, factories, petrochemical, power generation, food processing)
*Sample holes should be spaced at distances not exceeding 10m apart.

| Pipe

Ceiling Height	Area Coverage	Maximum Holes	Maximum Pipe Length Per Branch
3 m $10 \mathrm{~m} \times 120 \mathrm{~m}=1,200 \mathrm{~m}^{2}$ 11 115 m 5 m $10 \mathrm{~m} \times 120 \mathrm{~m}=1,200 \mathrm{~m}^{2}$ 11 115 m 10 m $10 \mathrm{~m} \times 110 \mathrm{~m}=1,100 \mathrm{~m}^{2}$ 11 105 m 20 m $10 \mathrm{~m} \times 105 \mathrm{~m}=1,050 \mathrm{~m}^{2}$ 11 75 m			

U Pipe

Ceiling Height	Area Coverage	Maximum Holes	Maximum Pipe Length Per Branch
3 m	$20 \mathrm{~m} \times 82.5 \mathrm{~m}=1,650 \mathrm{~m}^{2}$	$16(2 \times 8)$	82.5 m
5 m	$20 \mathrm{~m} \times 87.5 \mathrm{~m}=1,750 \mathrm{~m}^{2}$	$18(2 \mathrm{x} 9)$	82.5 m
10 m	$20 \mathrm{~m} \times 82.5 \mathrm{~m}=1,650 \mathrm{~m}^{2}$	$18(2 \mathrm{x} 9)$	77.5 m
20 m	$20 \mathrm{~m} \times 70 \mathrm{~m}=1,400 \mathrm{~m}^{2}$	$16(2 \mathrm{x} 8)$	67.5 m

M Pipe

Ceiling Height	Area Coverage	Maximum Holes	Maximum Pipe Length Per Branch
3 m $30 \mathrm{~m} \times 67.5 \mathrm{~m}=2,025 \mathrm{~m}^{2}$ $21(3 \times 7)$ 62.5 m 5 m $30 \mathrm{~m} \times 67.5 \mathrm{~m}=2,025 \mathrm{~m}^{2}$ $21(3 \times 7)$ 62.5 m 10 m $30 \mathrm{~m} \times 57.5 \mathrm{~m}=1,725 \mathrm{~m}^{2}$ $18(3 \times 6)$ 52.5 m 20 m $30 \mathrm{~m} \times 47.5 \mathrm{~m}=1,425 \mathrm{~m}^{2}$ $15(3 \times 5)$ 42.5 m			

Double U Pipe

Ceiling Height	Area Coverage	Maximum Holes	Maximum Pipe Length Per Branch
3 m	$80 \mathrm{~m} \times 50 \mathrm{~m}=4000 \mathrm{~m}^{2}$	$12(4 \times 3)$	20 m
5 m	$80 \mathrm{~m} \times 50 \mathrm{~m}=4000 \mathrm{~m}^{2}$	$12(4 \times 3)$	20 m
10 m	$80 \mathrm{~m} \times 50 \mathrm{~m}=4000 \mathrm{~m}^{2}$	$12(4 \times 3)$	20 m
20 m	$80 \mathrm{~m} \times 50 \mathrm{~m}=4000 \mathrm{~m}^{2}$	$12(4 \times 3)$	20 m

Please note that each pipe layout must be supported by a PipelQ Certificate of Conformity ensuring that the protected area meets the system classification to EN54-20.
FAAST Model: 8100E The FAAST 8100E model specification includes:

- Three-stage filtration including particulate wing
 separator and replaceable harsh filter
- Red IR \& Blue LED dual optical chamber
- Modbus networking
- IP connectivity enabled
- Continuous environmental calibration
- K3 seismic stability to 9G
- Pre alarm for Class A and B

Please contact Kevin Dennis on tel: +44 (0)7580 902382 email kevin.dennis@honeywell.com for comprehensive design support, technical advice and BIM Modelling

Area Coverage Planner (FAAST LT)

The following data is aligned with BS5839 Part 1 and allows you to quickly calculate the most efficient pipe typology to maximise the number of sampling points ${ }^{*}$ when designing an Aspirating Smoke Detector system (ASD) for the following applications:

- Cold Storage, refrigeration and freezer rooms
- Storage facilities (e.g. warehouses, distribution centres and high roof storage areas)
- Restricted or difficult to access locations (e.g. voids, lift shafts, ducts, custodial facilities)
- Large open spaces (e.g. stadiums, hotels, shopping centres, airports, theatres and indoor sports facilities)
- Discreet detection (e.g. residential, historic buildings, museums, galleries, high-end architecture)
*Sample holes should be spaced at distances not exceeding 10m apart.

I Pipe single-channel detector

(dual-channel detector = $x 2$ pipe layouts/area coverage)

U Pipe single-channel detector
(dual-channel detector $=\mathbf{x} 2$ pipe layouts/area coverage)

M Pipe single-channel detector

(dual-channel detector = x2 pipe layouts/area coverage)

Double U Pipe single-channel detector (dual-channel detector $=$ x2 pipe layouts/area coverage)

Ceiling Height	Area Coverage	Maximum Holes	Maximum Pipe Length Per Branch
3 m	$40 \mathrm{~m} \times 38 \mathrm{~m}=1520 \mathrm{~m}^{2}$	$16(4 \times 4)$	28 m
5 m	$40 \mathrm{~m} \times 37 \mathrm{~m}=1480 \mathrm{~m}^{2}$	$16(4 \times 4)$	27 m
10 m	$40 \mathrm{~m} \times 36 \mathrm{~m}=1440 \mathrm{~m}^{2}$	$16(4 \times 4)$	26 m
20 m	$40 \mathrm{~m} \times 33 \mathrm{~m}=1320 \mathrm{~m}^{2}$	$12(4 \times 3)$	23 m

Please note that the FAAST LT Dual-Channel unit allows you to double the above pipe work layout options from a single device therefore maximising the area coverage from a single ASD unit (see Channel 2 indicated on each pipe layout image above). Each pipe layout must be supported by a PipelQ Certificate of Conformity ensuring that the protected area meets the system classification to EN54-20. Please note that local application standards may limit area coverage per ASD device.

FAAST Model: LT

The FAAST LT model specification includes:

- IR optical chamber
- Whisper quiet performance
- Flexible fire panel integration
- IP65 rated
- Ultrasonic airflow monitoring
- Double knock option

Please contact Kevin Dennis on tel: +44 (0)7580 902382 email kevin.dennis@honeywell.com for comprehensive design support, technical advice and BIM Modelling.

